
1 Introductions

1.1 Overview
The SDMMC card interface is available on all LPC55S6x/LPC55S2x/LPC552x
devices.

The SDMMC card interface supports interface to two devices (SD0 and SD1)
with the same SDMMC peripheral.

This application note introduces how to use the same SDMMC peripheral to
access dual SD cards based on LPCXprsso55S69 SDK.

1.2 SDMMC blocks
The SD/MMC controller interface consists of the following main functional
blocks:

• Bus Interface Unit (BIU) - Provides AHB and DMA interfaces for register
and data read/writes.

• Card Interface Unit (CIU) - Handles the card protocols and provides
clock management.

• Internal MCI DMA controller: AHB bus mastering DMA controller.

Figure 1 shows the block diagram.

Contents

1 Introductions.. 1
1.1 Overview.......................1
1.2 SDMMC blocks.............1
1.3 SDMMC pin

description......................2
2 Development and test environment....... 3

2.1 Software
environment................... 3

2.2 Hardware
environment and
setup.............................. 4

3 Software implementation....................... 5
3.1 Basic ideas................... 5
3.2 Adding functions on

SDK for SD1
enablement.................... 6

3.3 Updating SDK for
dual SD cards support... 7

3.4 Demonstrating dual
SD cards access............ 7

4 Summary... 9

AN12777
Access dual SD cards on LPC55S6x
Rev. 0 — March 16 2020 Application Note

Figure 1. SDMMC block diagram

1.3 SDMMC pin description
Table 1 describes the available pins functions of SDMMC interface. Generally, SDn_CLK, SDn_CARD_DET_N, SDn_CMD, and SDn_D
(n= 0, 1) pins are required to interface to a device and others are optional.

SD0_D supports up to 8-bit data and SD1_D supports up to 4 bits. Both support 1-bit mode.

 NOTE

Table 1. SDMMC pin description

Pin function Type Description

SD0_CLK, SD1_CLK O SD/SDIO/MMC clock

SD0_CARD_DET_N, SD1_CARD_DET_N I SDIO card detect for signal slot.

0 indicates that there is a card.

SD0_WR_PRT I SDIO card writes protect

1 indicates that the write operation is protected.

SD0_CMD, SD1_CMD O/I Command input/output

SD0_D[7:0], SD1_D[3:0] O/I Data input/output for data lines DAT[7:0]

SD0_POW_EN, SD1_POW_EN O SD/SDIO/MMC slot power enabled

SD1_BACKEND_PWR O Back-end power supply for embedded device

Table continues on the next page...

NXP Semiconductors
Introductions

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 2 / 10

Table 1. SDMMC pin description (continued)

Pin function Type Description

It controls back-end power supply for one embedded
device. This bit does not control the VDDH of the host
controller. A register bit enables the software
programming. The value on this register controls to
switch on and off the embedded device.

SD0_CARD_INT_N, SD1_CARD_INT_N I

Card interrupt line

This plan is used to indicate a card interrupt, which is
sampled even when the closk to the card is switched
off. It is connected to the eSDIO card interrupt line and
defined only for eSDIO.

The SDMMC pins can be configured by I/O control registers (IOCON) like other peripherals. The pin settings for SD0_CLK, SD0_CMD,
SD0_Dn, SD1_CLK, SD1_CMD, and SD1_Dn are suggested as Table 2.

Table 2. SDMMC suggested pin settings

IOCON bit(s) Type D pin Type A pin

10 Not used, set to 0. Analog switch is open (disabled). Set to 0.

9 Controls open-drain mode. Set to 0 Same as Type D.

8 DIGIMODE: Set to 1. Same as Type D.

7 INVERT: Set to 0 Same as Type D.

6 SLEW: Set to 1 Same as Type D.

5:4 Mode: Set to 0 Same as Type D.

3:0 FUNC: Must slect the correct function for
this peripheral.

Same as Type D.

General comment A good choice for SDIO functions. A potential choice. The performance may be
reduced by absence of the SLEW function.

The pin function in Table 1 are configured by the value of bit 3:0 (FUNC field) in IOCON in Table 2. For the details,
refer to the tables in IOCON pin functions in relation to FUNC values of LPC55S6x/LPC55S2x/LPC552x User
manual (document UM11126).

 NOTE

2 Development and test environment
To show the feature of dual SD cards support, the software and hardware environments are built as below.

2.1 Software environment
• LPCXpresso55S69 SDK with middleware of SDMMC support (v2.63)

• KEIL MDK v5.27

• A serial terminal program (e.g. PuTTY) with the settings: 115200 + 8 + N + 1

NXP Semiconductors
Development and test environment

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 3 / 10

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true

2.2 Hardware environment and setup
• LPCXpresso55S69 EVK board Rev2.0

• Two SD cards

• Oone more board to support SD card with a card slot

• Personal computer

• Micro USB cable and some jump wires

The LPCXpresso55S69 EVK board is designed to support one SD card with one SD card slot connected to the SD0 pins. And it
reserves the pins related to SD1 on Arduino header for connecting to another SD card. Figure 2 shows the screenshot of the
schematic and the related pins are highlighted in yellow.

Figure 2. SD1 pins reserved on LPCXpresso55S69 EVK

To drive a SD card on another board with SD1 pins, power and ground should be shared as well. They are also reserved on an
Arduino header of LPCXPrsso55S69 EVK, as shown in Figure 3, highlighted in yellow.

Figure 3. Power & GND pins reserved on LPCXpresso55S69 EVK

Figure 4 shows the screenshot of photo for actual SD1 connections on Arduino header on LPCXprsso55S69 EVK. With the jump
wires, it is easy to connect to another board with a SD card slot for another card access.

NXP Semiconductors
Development and test environment

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 4 / 10

Figure 4. SD1 connections on Arduino header on LPCXpresso55S69 EVK

3 Software implementation

3.1 Basic ideas
The implementation of software is based on LPCXpresso55S69 SDK. The basic ideas for the SW implementation are as follows.

One SDMMC controller is shared with two devices although there are two sets of independent pins for them. So the access
process to both devices must be serial not be parallel. It indicates that one transaction on one device should start only after the
other is completed. Otherwise, two transactions could interfere to each other. This key point gives the restriction to the software
implementation. The developer of application program should mind it as well.

Therefore, to show the feature more simply and clearly, the transactions on dual SD cards are implemented with polling and
blocking mode in the reference codes.

Additionally, the current SDK only presents the functions to one SD card (SD0). To be better compatible to the SDK, as possible,
the new functions to support another SD card (SD1) are created in new files instead of modifying the exist functions and files.
Thus, these new files containing new functions can be added in SDK without interfering the existed files.

Lastly, the SDMMC peripheral are shared as mentioned, but there still presents some different configurations for SD0 and SD1
in registers:

• PWREN register for power enabling.

• CLKENA register for clock enabling.

• CDETECT register for card detection.

• CTYPE register for switching card type between 1-bit, 4-bit and 8-bit modes.

• When sending commands, bits 20-16 of the CMD register must be programmed with 0 or 1 for SD0 or SD1 respectively.

The controlling to PWREN, CLKENA, CDETECT, and CTYPE registers have been implemented at HAL level in SDK. For the introductions
of the registers, refer to LPC55S6x/LPC55S2x/LPC552x User manual (document UM11126). In this software implementation for
dual SD cards support, it is only required to call the APIs for SD1 support, e.g. SD1 initializations. However, sending a command
to SD1 is not implemented in the transfer function of SDK. So it needs to add the transfer function of SD1. Table 3 describes
related bit field of the CMD register.

NXP Semiconductors
Software implementation

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 5 / 10

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true

Table 3. Command field for SD0 or SD1 in CMD register

But Symbol Value Description Reset value

20:16 CARD_NUMBER 0 or 1
Specifies the card number of
SDCARD for which the current
Command us being executed.

0

The new functions for SD1 enablement are added based on the above different registers configurations for both SD card devices
(SD0 and SD1).

3.2 Adding functions on SDK for SD1 enablement
This section will introduce the points of how to add functions for SD1 enablement based on the SW levels of SDMMC in SDK:
HAL level, Host level, protocol level and board level. For more details, refer to AN12777SW.

1. HAL level

HAL level of SDMMC interface in SDK is abstracted in the files of fsl_sdif.c and fsl_sdif.h, which contain the SDMMC
registers settings.

As mentioned in Basic ideas, except for sending command to SD1 via CMD register, all other different registers
configurations for SD0 and SD1 have been implemented in SDK. Table 4 lists the function APIs for SD1.

Table 4. APIs of SD1 HAL in SDK

Function name Description Remark

SDIF_EnableCard1Clock() Enable/disable SD card1 clock Provided in fsl_sdif.h

SDIF_EnableCard1Power() Enable/disable the SD card1 power Provided in fsl_sdif.h

SDIF_SetCard1BusWidth() Set SD card1 data bus width Provided in fsl_sdif.c

SDIF_DetectCard1Insert() Detect SD card1 insert status Provided in fsl_sdif.h

Create a function to send command to SD1 via CMD register. Refering to the existed function named
SDIF_SetCommandRegister() for SD0, the new function is named as SDIF1_SetCommandRegister() where the SD1 is
specified as the current card number (see Table 3 for the definition). The related code line is as shown in Figure 5. The
highlighted in yellow is the settings of the bits.

Figure 5. Setting command field for SD0 or SD1 in CMD register

For more details, read the new file of fsl_sdif1.c including all the new functions of HAL level.

2. Host level

Host level classified to middleware is the port between SDMMC HAL and protocol level. The basic system operations are
done in this level, e.g. transfer function, card detection and card power switching. The reference code in this level is referring
to the file of fsl_sdmmc_host.c with polling and blocking mode under the path of \middleware\sdmmc\port\sdif
\polling\.

A code line is added to specify the SD1 before transferring with blocking mode in the new transfer function for SD1 named
SDMMC1HOST_TransferFunction(). See the highlighted in yellow in Figure 6.

NXP Semiconductors
Software implementation

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 6 / 10

Figure 6. Setting Command field for SD0 or SD1 in CMD register

The function of SDMMCHOST_DetectCard1InsertByHost() for SD1 card detection and SDMMCHOST_PowerOnCard1()/
SDMMCHOST_PowerOffCard1() for SD1 power switching are to call individually the API
SDMMCHOST_CARD1_DETECT_INSERT_STATUS() and SDIF_EnableCard1Power() which have been implemented in HAL
level of SDK.

For more details, read the new file of fsl_sdmmc_host1.c including all the new functions of Host level.

3. Protocol level

Protocol level classified to middleware implements the command protocol of SD card besides MMC and SDIO for being
called by application program. Based on the different register configurations for SD0 and SD1 mentioned above, the new
functions that need to be added for SD1 in this level are involved with SD1 initializations, SD1 clock & timing settings, SD1
power switching and SD1 detection which are implemented in a new file, fsl_sd1.c. They just call the APIs in HAL and
Host level introduced above. Please read the file of fsl_sd1.c for the details.

Because plenty of SD card protocol functions in the file of fsl_sd.c in SDK are defined as static. The new file
of fsl_sd1.c will be included at the end of line of the file of fsl_sd.c in order to share the functions for reducing
the code size.

 NOTE

4. Board level

It needs to configure SD1 related pins as well since SD1 has its independent pins from SD0. This could be done according
to the suggested settings in and referring to the configurations on SD0 related pins in SDMMC examples of SDK.

3.3 Updating SDK for dual SD cards support
The created source code and project information files for dual SD cards support are provided in package. They are required to
merge into the SDK for working. Perform as below to update SDK for dual SD cards support.

• Copy the files of fsl_sdif1.c and fsl_sdif1.h under \drivers\ in the attached SW package to \devices
\LPC55S69\drivers\ in the LPCXpresso55S69 SDK package.

• Copy the files of fsl_sd1.h and fsl_sdmmc_host1.h under \sdmmc\inc\ in the attached SW package to \middleware
\sdmmc\inc\ in the LPCXpresso55S69 SDK package.

• Copy the files of fsl_sdmmc_host1.c under \sdmmc\port\sdif\polling\ in the attached SW package to \middleware
\sdmmc\port\sdif\polling\ in the LPCXpresso55S69 SDK package.

• Copy the file of fsl_sd1.c under \sdmmc\src in the attached SW package to \middleware\sdmmc\src\ in the
LPCXpresso55S69 SDK package.

Add #include fsl_sd1.c at the end of line of the file of fsl_sd.c in the LPCXpresso55S69 SDK package.

• Copy the folder of dual_sdcards containing keil MDK project information, example code and board level of codes in the
attached SW package to \boards\lpcxpresso55s69\demo_apps\ in the LPCXpresso55S69 SDK package.

3.4 Demonstrating dual SD cards access
Under \boards\lpcxpresso55s69\demo_apps\dual_sdcards\, there is a simple example implemented in the file of
dual_sdcards.c to demonstrate the dual SD cards access.

NXP Semiconductors
Software implementation

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 7 / 10

In the example, after completing the basic configurations about system and peripheral of SDMMC, perform the following steps:

1. Keep detecting if one SD card (SD0) is inserted into the slot. Once detected, the card will be be powered on and
initialized.

2. Print out some card information obtained in the initialization process.

3. Perform the same operations on the other SD card (SD1) on the other card slot. After both cards are initialized successfully,
perform the access to SD0 card.

a. Write one block of data to it and read it out.

b. Compare if the data is consistent.

c. Write/read/compare multiple block of data.

d. If consistent, it indicates the access is successful. Or, it fails.

4. Perform the same access on SD1 card.

5. After setting up the hardware and software mentioned, open the project of dual_sdcards.uvprojx under the path \boards
\lpcxpresso55s69\demo_apps\dual_sdcards\cm33_core0\mdk\ in SDK. After building, downloading and running the
demo successfully, the log for dual SD cards access will be seen on the serial terminal, as shown in Figure 7.

NXP Semiconductors
Software implementation

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 8 / 10

Figure 7. Logging for dual SD cards access

4 Summary
This application note elaborates on a way to implement dual SD cards support with the same one SDMMC interface on LPC55S6x
family. It is presented in the reference codes based on LPCXpresso55S69 SDK with middleware of SDMMC support in which
only one SD card is supported. Corresponding to the SDK, LPCXPresso55S69 EVK board is used for the enablement, as the
other SD card’s pins are reserved for connecting easily.

• It introduces the SDMMC block and pin assignment for SD0 and SD1.

• It describes the software and hardware environment, especially hardware setup for the dual SD cards support.

• It explains how to add functions for the other SD cards support under the basic ideas, as one card has been supported in
the SDK.

• It tells how to merge the software package into the SDK. Lastly, it shows the result with a simple example.

NXP Semiconductors
Summary

Access dual SD cards on LPC55S6x, Rev. 0, March 16 2020
Application Note 9 / 10

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: March 16 2020
Document identifier: AN12777

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introductions
	1.1 Overview
	1.2 SDMMC blocks
	1.3 SDMMC pin description

	2 Development and test environment
	2.1 Software environment
	2.2 Hardware environment and setup

	3 Software implementation
	3.1 Basic ideas
	3.2 Adding functions on SDK for SD1 enablement
	3.3 Updating SDK for dual SD cards support
	3.4 Demonstrating dual SD cards access

	4 Summary

